Potential benefits of Waste-to-Energy (WTE) for Turkey
The only proven alternative of landfilling for the management of the post-recycling waste, that means the waste with no value in the market or recovery potential, is thermal treatment for the recovery of energy (waste-to-energy or WTE).
by Dr. Samet Öztürk, Dr. Thanos Bourtsalas
The only proven alternative of landfilling for the management of the post-recycling waste, that means the waste with no value in the market or recovery potential, is thermal treatment for the recovery of energy (waste-to-energy or WTE). The benefits of WTE over landfilling are mainly associated with the complete destruction of pathogens, the volume reduction of the municipal solid waste (MSW) by 90%, the production of about 0.5 MWh of electricity and more than 0.6 MWh of district heating per ton of MSW combusted; the savings of about 0.5 to 1 ton of Greenhouse Gases emissions per ton of MSW, and the preservation of about 1 sq. meter of land for every 10 tons of MSW. However, there is continuing opposition to WTE based on the early history of incineration, and the concern that these technologies will emit harmful pathogens to public health; but, also, due to the high capital costs as compared to landfilling. On top, capacity building is one of the major issues for the deployment of such technologies, especially for countries with no prior expertise. The aim of this study is to provide a snapshot of the current status of waste management in the world, provide evidence on the role of WTE in sustainable waste management, and assess the benefits of such technologies for the case of Turkey. The main finding from the global assessment was that developed nations took several decades to reach their present state of development and achievement in sustainable waste management. On the other hand, developing nations can use the Chinese example and accelerate the phasing out of landfilling or the improper dumping by the massive application of WTE technology. Specifically for the case of Turkey, a nation with high energy dependency on other countries, and with ~70% of MSW landfilled; with the assumption that 50% of the MSW produced in the country will be processed for the production of energy, WTE deployment will be associated with the savings of ~$122 MM per year, by the substitution of natural gas. Also, WTE can contribute up to 2% to the electricity demand of the country, and can lead to the savings of ~ 1.5 million tons of CO2-eq and ~1.6 million m2 of land; besides, the aesthetic superiority as compared to landfilling.
published: www.ijesr.com, 12|2020
Keywords: Energy Recovery, Sustainability, Climate, Turkey
Related papers
TWT in the Centre of Circular Economy – Roxyfuel for Energy-saving CO2 Delivery
Report on Experience in Dubai
Key E-Waste Statistics
First Release, Environment, Electrical and Electronic Waste
ESWET reply to the European Commission consultation on the proposed Delegated Act & Annex on GHG savings of low carbon fuels
Packaging Waste Statistics
Minutes of the ForumZ web talk on 14.08.2024
Synergies for the Climate by combining AD plants with WtE
Waste Management: A Case of Circular Economy Principle for Resources Sustainability in An Era of Climate Change
Using life cycle assessment to compare efficiency and environmental impacts of different waste to energy options for Sao Paulo’s municipal solid waste
Report on Experience in Dubai
Key E-Waste Statistics
First Release, Environment, Electrical and Electronic Waste
ESWET reply to the European Commission consultation on the proposed Delegated Act & Annex on GHG savings of low carbon fuels
Packaging Waste Statistics
Minutes of the ForumZ web talk on 14.08.2024
Synergies for the Climate by combining AD plants with WtE
Waste Management: A Case of Circular Economy Principle for Resources Sustainability in An Era of Climate Change
Using life cycle assessment to compare efficiency and environmental impacts of different waste to energy options for Sao Paulo’s municipal solid waste